Aither is a double-blind peer review, Open Access online academic journal. It is indexed at ERIH+ and Scopus. It is published by the Faculty of Arts of the Palacký University in Olomouc in cooperation with the Philosophical Institute of the Academy of Sciences of the Czech Republic. It comes out twice a year. Every second issue is international and contains foreign-language articles (mainly in English, but also in German and French). The journal is registered under the number ISSN 1803-7860.

Aither 23/2020 (International issue no. 7):58-85 | DOI: 10.5507/aither.2020.005

The Renaissance of Numbers: on Continuity, Nature of Complex Numbers and the Symbolic Turn

Jan Makovský
Center for Theoretical Study, Charles University & Czech Academy of Sciences

The paper presents an analysis of imaginary quantity before Gauss based on the notion of continuity and symbolic representation. Its aim is to uncover subtle roots of the "impossible", "sophisticated" or "absurd" entities that, as we claim, stem from the Renaissance notion of nature and from the "symbolic turn" which occurred in that period. In order to grant impossible quantities a reasonable (operational) meaning, it is necessary to establish an equation (formal continuity) between real and imaginary. It is possible only if the real is in a sense subsumed within the symbolic which holds paradigmatically for the notions of number and magnitude. For, once number and magnitude become symbolic representations of the same universal intellectual matter of quantity, an operational analogy and continuity between them may be established. Three "continuities" shall be distinguished on the path to such "universal mathematics" at the end of which the imaginary entities may acquire the citizenship in the Republic of numbers.

Published: March 30, 2020  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Makovský, J. (2020). The Renaissance of Numbers: on Continuity, Nature of Complex Numbers and the Symbolic Turn. Aither12(23), 58-85. doi: 10.5507/aither.2020.005
Download citation

References

  1. Argand, J.-R. (1806). Essai sur une manière de représenter les quantités imaginaires dans les construction géométriques. Paris: published anonymously.
  2. Aristotle (1984). The Complete Works of Aristotle. The Revised Oxford (Translation edited by J. Barnes). Princeton, N.J.: Princeton University Press.
  3. Bos, H. J. M. (2001). Redefining Geometrical Exactness. Descartes' Transformation of the Early Modern Concept of Construction. New York: Springer Science - Bussiness Media. Go to original source...
  4. Cardano, G. (2013). The De subtilitate of Girolamo Cardano (ed. J. M. Foster). Tempe: ACRS.
  5. Cauchy, A.-L. (1821). Cours d'analyse de l'École royale polytechnique. Ire Partie. Analyse algébrique. Paris: Debure frères.
  6. Chuquet, N. (1880). Le Triparty en la Science des Nombres. Par Maistre Nicolas Chuquet Parisien, publié d'après le manuscript fonds français n°1346 de la Bibliothèque nationale de Paris et précédé d'une Notice par M. Aristide Marre. Rome: Imprimérie des Sciences Mathématiques.
  7. Confalonieri, S. (2015). The Unattainable Attempt to Avoid the Casus Irreducibilis for Cubic Equations. Gerolamo Cardano's De regula Aliza. Weisbaden: Springer. Go to original source...
  8. Crapulli, G. (1969). Mathesis universalis. Genesi di un'idea nel XVI secolo. Roma: Edizioni dell'Ateneo.
  9. D'Alembert, J. le Rond (1746). "Recherches sur le calcul integral". Actes de l'Academie des Sciences de Paris, pp. 182-224.
  10. D'Alembert, J. le Rond (2008). OEuvres complètes de d'Alembert, Série I Traités et mémoires mathématiques, 1736-1755, Volume 4a, Textes de mathématiques pures (1745-1752). Paris: CNRS éditions.
  11. Descartes, R. (1902). OEuvres de René Descartes publiés par Charles Adam°& Paul Tannery sous les auspices du Ministère de l'instruction publique, 11 vols. Paris: Léopold Cerf.
  12. Descartes R. (1954). The Geometry of René Descartes: with a Facsimile of the First Edition (tr. M. L. Latham, & D. E. Smith). New York: Dover Publications.
  13. Euler, L. (1748). Introductio in analysin infinitorum, t. I. Lausanne: Bousquet & socii.
  14. Euler, L. (1749). "Recherches sur les racines imaginaires des équations". Mémoires de l'académie des sciences de Berlin 5, pp. 222-288.
  15. Ewald, W. B. (2005a). From Kant to Hilbert: a Source Book in the Foundations of Mathematics. Vol. 1. Oxford: Oxford University Press.
  16. Ewald, W. B. (2005b). From Kant to Hilbert: a Source Book in the Foundations of Mathematics. Vol. 2. Oxford: Oxford University Press.
  17. Farès, Ν. (2018). "Diophante et l'algèbre". URL:
  18. Flament, D. (2003). Histoire des nombres complexes. Entre algèbre et géométrie. Paris: CNRS Éditions.
  19. Flegg, G., Hay, C., & Moss, B. (1985). Nicholas Chuquet. Renaissance Mathematitian. Dodrecht / Boston / Lancaster: D. Reidel. Go to original source...
  20. Florensky, P. (1922). Мнимости в геометрии. Расширение области двухмерных образов геометрии [Imaginary numbers in geometry]. Moscow: Pomor'ye.
  21. Gardies, J.-L. (1984a). "Eudoxe et Dedekind". Revue d'histoire des sciences 37(2), pp. 111-125. Go to original source...
  22. Gardies, J.-L. (1984b). Pascal entre Eudoxe et Cantor. Paris: Librarie Philosophique J. Vrin.
  23. Gauss, C. F. (1799). Demonstratio nova theorematis omnem functionem algebraicam rationalem integram unius variabilis in factores reales primi vel secondi gradus resolvi posso, Phd. Thesis. Helmastadii: G. G. Fleckeisen.
  24. Gauss, C. F. (1876). Werke. Vol. 2. Göttingen: Königlichen Gesellschaft der Wissenschaften.
  25. Giaquinta, M. (2010). Forma delle cose. Idee e metodi tra storia e folosofia, I. Roma: Edizioni di storia e letteretura.
  26. Girard, A. (1629). L'invention nouvelle en algèbre. Amsterdam: Guillaume Blaeuw.
  27. Gonzáles-Velasco, E. A. (2011). Journey through Mathematics. Creative Episodes in Its History. New York: Springer. Go to original source...
  28. Granger, G. G. (1998). L'irrationnel. Paris: Éditions Odile Jacob.
  29. Harriot, T. (1631). Artis analyticae praxis. London: Robert Baker.
  30. Harriot, T. (2008). Thomas Harriot's Artis Analyticae Praxis. An English Translation with Commentary (ed. M. Seltman, & R. Goulding). New York: Springer.
  31. Katz, V. J., & K. H. Parshall (2014). Taming the Unknown: A History of Algebra from Antiquity to the Early Twentieth Century. Princeton, N.J.: Princeton University Press. Go to original source...
  32. Klein, J. (1992). Greek mathematical thought and the origin of algebra (tr. E. Brann). Cambridge / Massachusetts: Dover.
  33. Leibniz, G. W. (1849-1863). Leibnizens mathematische Schriften, C. I. Gerhardt (Hg.), I-VII, Berlin: A. Asher.
  34. Leibniz, G. W. (1875-1890). Die philosophischen Schriften, C. I. Gerhardt (Hg.), I-VII, Berlin: Weidmann.
  35. Leibniz, G. W. (1923-). Sämtliche Schriften und Briefe, I-VIII, Darmstadt / Leipzig / Berlin: Akademie Verlag.
  36. Makovský, J. (2019). "Cusanus and Leibniz: Symbolic Explorations of Infinity as a Ladder to God". IN: S. J. G. Burton, J. Hollmann, & E. M. Parker (eds.), Nicholas of Cusa and the Making of the Early Modern World, Leiden / Boston: Brill, pp. 450-484. Go to original source...
  37. Neubauer, Z. (2007). O poèátku, cestì a znamení èasù. Úvahy o vìdì a vìdìní. Praha: Malvern.
  38. Newton, I. (1707). Arithmetica universalis sive de compositione et resolutione arithmetica liber. Cantabriae: Typis academicis.
  39. Newton, I. (1728). Universal Arithmetick, Or, A Treatise of Arithmetical Composition and Resolution. London: J. Senex.
  40. Newton, I. (1967-1981). The Mathematical Papers of Isaac Newton (ed. D. T. Whiteside). 8 vols. Cambridge: Cambridge University Press.
  41. Rabouin, D. (2009). Mathesis universalis. L'idée de > d'Aristote à Descartes. Paris: Presses Universitaires de France. Go to original source...
  42. Rose, P. L. (1975). The Italian Renaissance of Mathematics. Studies on Humanists and Mathematicians from Petrarch to Galileo. Genève: Librarie Droz.
  43. Schermer, M. (2006). The Secrets of Mental Math. New York: Three River Press.
  44. Seidengart, J. (2000). "La métaphysique du minimum indivisible et la réforme des mathématiques chez Giordano Bruno". In: E. Festa, & R. Gatto (eds.), Atomismo e continuo nel XVII secolo, Naples: Vivarium, pp. 55-86.
  45. Stillwell, J. (2010). Mathematics and its History. New York / Dordrecht / Heidelberg / London: Springer. Go to original source...
  46. Viète, F. (1646). Francisci Vietae opera Mathematica (ed. F. van Schooten). Leyden: Ex officina Bonaventurae et Abrahami Elzeviorum.
  47. Viète, F. (2000). The Analytic Art: Nine Studies in Algebra, Geometry and Trigonometry from the Opus Restitutae Mathematicae Analyseos, Seu Algebra Nova (trans. T. R. Wittmer). New: York: Dover.
  48. Vopìnka, P. (2000). Úhelný kámen evropské vzdìlanosti a moci. Souborné vydání Rozprav s geometrií. Praha: Práh.
  49. Wagner, R. (2010a), "The natures of numbers in and around Bombelli's L'algebra". Archive for History of Exact Sciences 64, pp. 485-523. Go to original source...
  50. Wagner, R. (2010b). "The Geometry of the unknown: Bombelli's Algebra linearia". IN: A. Heeffer, & M. van Dyck (eds.), Philosophical Aspects of Symbolic Reasoning in Early Modern Mathematics, London: College Publications, pp. 229-267.

This is an open access article distributed under the terms of the Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.